(no subject)
Feb. 12th, 2006 08:36 pmNew antigravity solution will enable space travel near speed of light by the end of this century, predicts Dr. Franklin Felber.
Felber's antigravity discovery solves the two greatest engineering challenges to space travel near the speed of light: identifying an energy source capable of producing the acceleration; and limiting stresses on humans and equipment during rapid acceleration.
"Dr. Felber's research will revolutionize space flight mechanics by offering an entirely new way to send spacecraft into flight," said Dr. Eric Davis, Institute for Advanced Studies at Austin and STAIF peer reviewer of Felber's work. "His rigorously tested and truly unique thinking has taken us a huge step forward in making near-speed-of-light space travel safe, possible, and much less costly."
The field equation of Einstein's General Theory of Relativity has never before been solved to calculate the gravitational field of a mass moving close to the speed of light. Felber's research shows that any mass moving faster than 57.7 percent of the speed of light will gravitationally repel other masses lying within a narrow 'antigravity beam' in front of it. The closer a mass gets to the speed of light, the stronger its 'antigravity beam' becomes.
Felber's calculations show how to use the repulsion of a body speeding through space to provide the enormous energy needed to accelerate massive payloads quickly with negligible stress. The new solution of Einstein's field equation shows that the payload would 'fall weightlessly' in an antigravity beam even as it was accelerated close to the speed of light.
Accelerating a 1-ton payload to 90 percent of the speed of light requires an energy of at least 30 billion tons of TNT. In the 'antigravity beam' of a speeding star, a payload would draw its energy from the antigravity force of the much more massive star. In effect, the payload would be hitching a ride on a star.
"Based on this research, I expect a mission to accelerate a massive payload to a 'good fraction of light speed' will be launched before the end of this century," said Dr. Felber.
Felber's antigravity discovery solves the two greatest engineering challenges to space travel near the speed of light: identifying an energy source capable of producing the acceleration; and limiting stresses on humans and equipment during rapid acceleration.
"Dr. Felber's research will revolutionize space flight mechanics by offering an entirely new way to send spacecraft into flight," said Dr. Eric Davis, Institute for Advanced Studies at Austin and STAIF peer reviewer of Felber's work. "His rigorously tested and truly unique thinking has taken us a huge step forward in making near-speed-of-light space travel safe, possible, and much less costly."
The field equation of Einstein's General Theory of Relativity has never before been solved to calculate the gravitational field of a mass moving close to the speed of light. Felber's research shows that any mass moving faster than 57.7 percent of the speed of light will gravitationally repel other masses lying within a narrow 'antigravity beam' in front of it. The closer a mass gets to the speed of light, the stronger its 'antigravity beam' becomes.
Felber's calculations show how to use the repulsion of a body speeding through space to provide the enormous energy needed to accelerate massive payloads quickly with negligible stress. The new solution of Einstein's field equation shows that the payload would 'fall weightlessly' in an antigravity beam even as it was accelerated close to the speed of light.
Accelerating a 1-ton payload to 90 percent of the speed of light requires an energy of at least 30 billion tons of TNT. In the 'antigravity beam' of a speeding star, a payload would draw its energy from the antigravity force of the much more massive star. In effect, the payload would be hitching a ride on a star.
"Based on this research, I expect a mission to accelerate a massive payload to a 'good fraction of light speed' will be launched before the end of this century," said Dr. Felber.
Wow...
Date: 2006-02-13 01:59 am (UTC)If this works, and is implimentable, we have helped reduce the energy cost of near-LS travel (but of course the time of travel is still a nasty barrier).
Re: Wow...
Date: 2006-02-13 02:26 am (UTC)Frankly, I can't tell you which until the test results come back, but if it works, sweeeeet.
Re: Wow...
Date: 2006-02-13 04:10 am (UTC)That should be a rather introductory litmus test. Guardedly excited.
(My own understanding of that area's mathematics is very much at the "smile and nod, smile and nod" level. I did ask him when
(no subject)
Date: 2006-02-13 04:16 am (UTC)(no subject)
Date: 2006-02-13 04:29 am (UTC)And that kind of paradigm-changing discovery really does happen fairly regularly, and the rate is speeding up - we've had a few dozen in the last century, after all.
Since PhysOrg is usually pretty good about weeding out the total crackpots, I'm interested enough to want to see more. If it's crap, it's crap.