(no subject)
Feb. 23rd, 2005 01:25 pmScientists solve structure of rare-but-naturally-occuring antibody that destroys HIV.
Significantly, the structure shows what an effective HIV-neutralizing antibody can look like. 4E10 targets an area on the HIV surface protein GP41 that the virus uses to fuse its membrane to the membrane of a human cell it is infecting. The target area is unusually close to the virus's membrane surface, and the antibody has an unusual adaptation that might help it stick to the virus close to the membraneĀa "finger" of amino acids with a propensity to dip down into the membrane and bring the antibody in contact with the target area.
Moreover, since the structure shows what the "epitope" looks like -- the area on the HIV surface to which 4E10 binds -- this work gives scientists insight into how to reverse-engineer a component of an HIV vaccine. The structure of this antibody could be used as a template to design an epitope mimic that would stimulate the human immune system to make 4E10 or similar broadly neutralizing antibodies against HIV.
"Once one knows what the epitope is, one can design mimics of it much more easily," says Wilson, who is an investigator in The Skaggs Institute for Chemical Biology at The Scripps Research Institute.
Significantly, the structure shows what an effective HIV-neutralizing antibody can look like. 4E10 targets an area on the HIV surface protein GP41 that the virus uses to fuse its membrane to the membrane of a human cell it is infecting. The target area is unusually close to the virus's membrane surface, and the antibody has an unusual adaptation that might help it stick to the virus close to the membraneĀa "finger" of amino acids with a propensity to dip down into the membrane and bring the antibody in contact with the target area.
Moreover, since the structure shows what the "epitope" looks like -- the area on the HIV surface to which 4E10 binds -- this work gives scientists insight into how to reverse-engineer a component of an HIV vaccine. The structure of this antibody could be used as a template to design an epitope mimic that would stimulate the human immune system to make 4E10 or similar broadly neutralizing antibodies against HIV.
"Once one knows what the epitope is, one can design mimics of it much more easily," says Wilson, who is an investigator in The Skaggs Institute for Chemical Biology at The Scripps Research Institute.